Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 44(6): 1275-1287, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33635396

RESUMO

Alginates can be used to elaborate hydrogels, and their properties depend on the molecular weight (MW) and the guluronic (G) and mannuronic (M) composition. In this study, the MW and G/M ratio were evaluated in cultures of Azotobacter vinelandii to 3 and 30 L scales at different oxygen transfer rates (OTRs) under diazotrophic conditions. An increase in the maximum OTR (OTRmax) improved the alginate production, reaching 3.3 ± 0.2 g L-1. In the cultures conducted to an OTR of 10.4 mmol L-1 h-1 (500 rpm), the G/M increased during the cell growth phase and decreased during the stationary phase; whereas, in the cultures at 19.2 mmol L-1 h-1 was constant throughout the cultivation. A higher alginate MW (520 ± 43 kDa) and G/M ratio (0.86 ± 0.01) were obtained in the cultures conducted at 10.4 mmol L-1 h-1. The OTR as a criterion to scale up alginate production allowed to replicate the concentration and the alginate production rate; however, it was not possible reproduce the MW and G/M ratio. Under a similar specific oxygen uptake rate (qO2) (approximately 65 mmol g-1 h-1) the alginate MW was similar (approximately 365 kDa) in both scales. The evidences revealed that the qO2 can be a parameter adequate to produce alginate MW similar in two bioreactor scales. Overall, the results have shown that the alginate composition could be affected by cellular respiration, and from a technological perspective the evidences contribute to the design process based on oxygen consumption to produce alginates defined.


Assuntos
Alginatos , Azotobacter vinelandii/crescimento & desenvolvimento , Reatores Biológicos , Ácidos Hexurônicos , Alginatos/análise , Alginatos/química , Alginatos/metabolismo , Ácidos Hexurônicos/análise , Ácidos Hexurônicos/química , Ácidos Hexurônicos/metabolismo , Peso Molecular
2.
Electron. j. biotechnol ; 48: 36-45, nov. 2020. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1254948

RESUMO

Azotobacter vinelandii is a gram-negative soil bacterium that produces two biopolymers of biotechnological interest, alginate and poly(3-hydroxybutyrate), and it has been widely studied because of its capability to fix nitrogen even in the presence of oxygen. This bacterium is characterized by its high respiration rates, which are almost 10-fold higher than those of Escherichia coli and are a disadvantage for fermentation processes. On the other hand, several works have demonstrated that adequate control of the oxygen supply in A. vinelandii cultivations determines the yields and physicochemical characteristics of alginate and poly(3-hydroxybutyrate). Here, we summarize a review of the characteristics of A. vinelandii related to its respiration systems, as well as some of the most important findings on the oxygen consumption rates as a function of the cultivation parameters and biopolymer production.


Assuntos
Respiração , Biopolímeros/biossíntese , Azotobacter vinelandii/fisiologia , Poliésteres , Alginatos , Bactérias Gram-Negativas/fisiologia , Hidroxibutiratos , Fixação de Nitrogênio
3.
J Ind Microbiol Biotechnol ; 46(1): 13-19, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30357504

RESUMO

Azotobacter vinelandii OP is a bacterium that produces poly(3-hydroxybutyrate) (PHB). PHB production in a stirred bioreactor, at different oxygen transfer strategies, was evaluated. By applying different oxygen contents in the inlet gas, the oxygen transfer rate (OTR) was changed under a constant agitation rate. Batch cultures were performed without dissolved oxygen tension (DOT) control (using 9% and 21% oxygen in the inlet gas) and under DOT control (4%) using gas blending. The cultures that developed without DOT control were limited by oxygen. As result of varying the oxygen content in the inlet gas, a lower OTR (4.6 mmol L-1 h-1) and specific oxygen uptake rate (11.6 mmol g-1 h-1) were obtained using 9% oxygen in the inlet gas. The use of 9% oxygen in the inlet gas was the most suitable for improving the intracellular PHB content (56 ± 6 w w-1). For the first time, PHB accumulation in A. vinelandii OP cultures, developed with different OTRs, was compared under homogeneous mixing conditions, demonstrating that bacterial respiration affects PHB synthesis. These results can be used to design new oxygen transfer strategies to produce PHB under productive conditions.


Assuntos
Azotobacter vinelandii/metabolismo , Hidroxibutiratos/metabolismo , Oxigênio/metabolismo , Poliésteres/metabolismo , Reatores Biológicos , Meios de Cultura , Fermentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...